
International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1720
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Abstract: Sharing data is an important functionality in a public cloud. The data/files are stored in a cloud in an encrypted form
and data owners want to give delegate rights to the Authorized cloud users. There is a particular secure channel exist between
the data/files and the users which are costlier. There is a solution for this problem is key aggregate cryptosystem which
combines all the secret keys of encrypted data and form a one constant size aggregate key which is used to decrypt multiple files
from the cloud. In this paper we are creating CPA and CCA secure KAC, elliptic curves are efficiently using to implement the
aggregate key. These constant size aggregate keys reduce the use of secret channels.

Key words: Cloud computing, data sharing, data security, key aggregate cryptosystem, broadcast encryption

INTRODUCTION

The Cloud computing has millions of users around the
world. And because of this increasing number of users the
current cloud computing has pushed much restriction of
data sharing capabilities for numerous applications.
Government ,corporations, healthcare, social networks are
used to store the data in a cloud and it has the ability to
allow multiple users around the globe , cloud is also used
by the social networking sites to create a more connected
world used to share text as well as multimedia. The cloud
computing also allows remote monitoring and diagnosis of
patients with smart phones.
In spite of all its advantages, the cloud is vulnerable to
privacy and security attacks that are a major interruption to
its good acceptance as the

Primary means of data sharing in today’s world. The IDC
Enterprise panel carried out the survey in August 2008
according to that survey 75percent of security challenges
found and the cloud users worried about their critical
business and IT systems being at risk of attack. While
security issues from external agents are common and
malicious service providers must also be taken into
consideration. As online data almost always resides in
shared environment it is important to provide security to
the data of the cloud
The some of the primary requirements of users in a cloud
based data sharing service:
Data confidential: Illegal users and the cloud service
providers should not be able to access the data at any given
time. Data should remain confidential while sharing,
User revocation: any user’s access rights must be revoked
by the owner without affecting other authorized users

Scalability and efficiency: maintaining scalability and
efficiency is the biggest challenge faced by the data
management on the cloud in the face of very large user
bases and dynamically changing data usage patterns.
The important functionality of cloud storage is data
sharing. For example, users can let their friends view a
subset of their private pictures or a data; an enterprise may
grant her employees access to a part of private data. The
challenging problem is how to effectively share encrypted
data. of course the data users can able to download the
encrypted data from the cloud, decrypt them, then share
them with others , but it loses the value of cloud storage.
Users should be able to delegate the access rights of the
sharing data to others so that they can access these data
from the server directly. However, finding an efficient and
secure way to share partial data in cloud storage is not
trivial.
A conventional way of ensuring data privacy is to depend
on the server to implement access control mechanisms. This
approach is prone to privilege escalation attacks in shared
data environments such as the cloud, where data
corresponding to multiple users could exist in on the same
server. The secure online data sharing technology comes
in two major flavors-trusting a third party assessor, or
using the user’s own key to encrypt her data while
preserving secure.
In both case, a user would want a consistent and efficient
cryptographic method in place, with prescribed guarantees
of security, high scalability and ease of use. The main
challenge in designing such a cryptosystem lies in effective
sharing of encrypted data. In a cloud the data sharing
design on the cloud is successful only if data owners can
delegate the access rights to their data efficiently to

Secure Channels Reduction by KAC with
Transmitting Aggregate Keys for Cloud

Sharing Data
 Mr. Mohemmed Yousuf ,Mr.Godhandaraman ,Mr.Karthick Myilvahanan

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1721
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

multiple users, who can then access the data directly from
the cloud servers.

Fig1: A desirable online data sharing by aggregate key.

Fig. 1 describes a realistic online data sharing setup on the
cloud. Assume that a data owner Alice is using an online
data sharing service such as Microsoft One Drive to store
certain classes of data (here class may refer to any data
structure such as a file folder or any collection of these). She
wants to add an extra layer of security for her data by
storing them in an encrypted fashion. Now, she wants to
share a specific subsets of these documents with a set of ^ S
of data users. For this, she needs to give each of these users
with decryption rights to specific classes of the data that
they are authorized to access. A naive solution is for each
message class having different decryption key and shares
them consequently with the designated users via secured
channels. This method is not practically deployable for two
major reasons. First, the number of secret keys would
increase with the number of data classes. Second, any user
decryption rights would require Alice to entirely re-encrypt
the corresponding subset of data, and distribute the new set
of keys to the other existing valid users. This makes the
scheme inefficient and difficult to scale. In public key
cryptosystems the decryption key is usually sent via a
secure channel, smaller key sizes are desirable. Moreover,
resource constrained devices such as wireless sensor nodes
and smart phones cannot afford large expensive storage for
the decryption keys either.
An ideal scenario, as described in Fig. 1, is where Alice can
create a single constant size decryption key KS that
combines the decryption rights to each of the data classes in
S, and then use a public key framework to broadcast this
key to the target set of users ^ S in the form of a low
overhead broadcast aggregate key K(S, S^). This scheme is
efficient, avoids the use of secret channels which are costly
and difficult to realize in practice, and is scalable to any
arbitrary number of data classes and data users. In this
paper, we attempt to build precisely such a data sharing

framework that is provably secure and at the same time,
efficiently implementable.

 Related work
Identity Based Encryption (IBE): IBE is belongs to a public-key
encryption category. Identity string is situating for
encryption which is nothing but user’s public key. In IBE,
master secret (ms) keys are generated by the private key
generator and based on users identity secrete key will be
provided. Sender wants to share files. So sender will
encrypt the files by making use of user identity and public
parameter and sends the files. Receiver will decrypt these
files by making use of his secret key. But out of key-
aggregation and IBE, only one assumes arbitrary oracles.
Key aggregation is inhibited as keys to be aggregated will
come from various identities. The drawback of these
methods is cipher text size is non-constant and cost of
storing cipher text and transmitting it expensive.

Attribute Based Encryption (ABE): In Attribute Based
Encryption technique an attribute will be related with
cipher text. From master secret key, the secret key will be
derived. This secret key is used to decrypt the files only if
all its related attributes go after the rules. Before Attribute
Based Encryption technique was introduced, the user who
wanted secret key must go to third party and proving he is
real by providing his identity and then he was able to
decrypt the file. Later in ABE scheme the secret key of user
was not allowed to a single centre. Instead it was
authorized by independent authorities. But still this scheme
has disadvantages i.e. no solidity on secret key. In this
method there is linear increase in key size, with the increase
in attributes. Disadvantages are (a) Decryption key size is
non-constant. (b) Requires more space to store keys. (c)
Decryption key size increases linearly. (d) Expensive of
managing keys.

Symmetric Key Encryption: Benaloh proposed an encryption
scheme, where a huge number of keys can be sent rapidly
in a broadcast scenario. The key origin is as follows.
Initially choose two prime numbers p and q for a composite
module. At random, master secret key will be chosen.
Dissimilar prime numbers will be allied with each class. A
public system parameter is considered for which all the
prime numbers will be put. The outcome of this is a
constant size key. This method is designed for symmetric-
key setting. So here the sender should encrypt files with
corresponding secret keys which will not be feasible. The
disadvantages of this system are both encryption and
decryption is done by same key and encryptor should get
corresponding key to encrypt files.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1722
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Hierarchical Encryption: One of the most popular techniques
for access control in online data storage is to use a pre-
defined hierarchy of secret keys in the form of a tree-like
structure, where access to the key corresponding to any
node implicitly grants access to all the keys in the sub tree
rooted at that node. For instance, uses repeated evaluations
of a pseudo-random function/block ciphering fixed secret
to generate a tree hierarchy of symmetric keys. Some more
advanced schemes extend access control to cyclic and
acyclic graphs. Several provably secure identity-based
flavors of hierarchical encryption have also been studied
extensively in. A major disadvantage of hierarchical
encryption schemes is that granting access to only a
selected set of branches within a given sub tree warrants an
increase in the number of granted secret keys. This in turn
blows up the size of the key shared.

Our Contribution
The most important contributions of this paper can be
enumerated as follows:
1) In this paper we propose a basic key aggregate
cryptosystem an efficiently implementable version by using
asymmetric bilinear pairings. We prove our construction to
be completely secure against a non-adaptive adversary in
the standard model under appropriate security
assumptions. We also create that the construction is
collusion resistant against any number of colluding parties.
2) We propose a CCA-secure fully collusion resistant
construction for the basic KAC scheme with low overhead
cipher texts and aggregate keys. To the best of our
knowledge, this is the first KAC construction in the
cryptographic literature proven to be CCA secure in the
standard model.
3) We show how the basic KAC structure may be efficiently
extended and combined with broadcast encryption schemes
for distributing the aggregate key among an arbitrary
number of data users in a real-life data sharing
environment. The extension has a secure channel
requirement of 𝑂 (𝑚 + 𝑚′) for m data users and m0 data
owners, which is an improvement over the 𝑂 (𝑚𝑚′)

requirement reported in [6]. In addition, the extended
construction continues to have the same overhead for the
public parameters, cipher texts and aggregate keys, and
does not require any secure storage for the aggregate keys,
which are publicly broadcast.
4) Experimental results in an actual cloud environment are
presented to validate the space and time complexity
requirements, as well the network and communication
requirements for our proposed constructions.

PRELIMINARIES

We commence by properly defining the framework key-
aggregate cryptosystem. We depict the framework in two
parts, for the transparency of presentation. The basic
framework focuses on generating the aggregate key for any
random subset of data classes, while the extended
framework aims to transmit this aggregate key among
arbitrarily large subsets of data users. We also draw the
game based framework for formally proving the static
security of these schemes. Finally, we state the difficulty
assumptions used for proving the security of these
schemes.

Key-Aggregate Cryptosystem:
The Framework of KAC is a cluster of five randomized
polynomial-time algorithms. The system administrator is
responsible for setting up the public parameters via the Set
Up algorithm. A data owner ready to share her data using
this system registers to receive her own public and private
key pairs, created by using the Key Gen method. The data
owner is responsible for classifying each of her data
files/messages into a exact class i. Each message is
consequently encrypted by an Encrypt method and stored
online in the cloud. When delegating the decryption rights
to a particular subset of message classes, the data owner
uses the Extract operation to create a constant-size
aggregate decryption key unique to that subset. Finally, an
authorized data user can use this aggregate key to decrypt
any message belonging to any class i ∈ S. We now describe
each of the five algorithms involved in KAC:
1)Set up (1⋋, m): Takes the number of data classes n as the
input and the security parameter⋋. Output the public
parameter param.
2) Key Gen (): The Key gen () method outputs the public
key PK and the master secret key msk for a data owner
registering in the system.
3) Encrypt (param, PK, i, M): The encrypt operation takes
the public key parameter PK, the data class i and the
plaintext data M as the input and Outputs the subsequent
cipher text C.
4) Extract (param, msk, S): The extract () operation takes the
master secret key and a subset of data classes S⊆ {1, 2....., n}
as input and Computes the aggregate key KS for all
encrypted messages belonging to these subset of classes.
5) Decrypt (param, C, i, S, KS) : Decrypt () operation takes
the cipher text C, the data class i and the aggregate key KS
corresponding to the subset S such that i ∈ S as an input.
Output the decrypted message.

A PROVABLY SECURE BASIC KAC USING ASYMMETRIC
BILINEAR PAIRINGS
In this segment, we present the design of the basic key
aggregate cryptosystem introduced using asymmetric
bilinear pairings that are useful and efficiently

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1723
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

implementable, and properly prove its crypto graphic
security. The basic KAC creation serves to demonstrate
how a single data owner within different classes of
encrypted data online, can generate a single decryption key
corresponding to any arbitrary subset S ⊆{1,..., n} of these
data classes. We prove our construction to be non-
adaptively CPA secure and fully collusion resistant against
any number of colluding parties, under the asymmetric n-
BDHE exponent assumption.

Construction
This section presents the basic KAC construction for a
single data owner using asymmetric bilinear pairings. we
assume the existence of equi-prime order (for a ⋋-bit prime
q) elliptic curve subgroups G1 and G2, along with their
generators P and Q. We also assume the existence of a
multiplicative cyclic group GT, also of order q with identity
element 1. Finally, we assume there exists an asymmetric
bilinear pairing e : G1 ×G2→GT.
Setup (1⋋ ,𝑚) : arbitrarily take ∝ ∈Zq. Output the system
parameter as param = (𝑃,𝑄, 𝛾𝑝,𝛼,𝑛, 𝛾𝑄,𝛼,𝑛) Discard 𝛼.
Key Gen (): arbitrarily pick𝛾𝜖𝑧𝑞. Put the master secret key
msk to𝛾. Let PK1 = 𝛾𝑃 and PK2 = 𝛾Q. Set the public key PK
=(PK1, PK2). Output (msk, PK) Encrypt (param, PK, i, M).
For a message M∈GT belonging to class i ∈{1,2,...,n,}
arbitrarily choose t ∈ Zq. Output the cipher text C as
C= (𝑐0,𝑐1,𝑐2)= (𝑡𝑄, 𝑡(𝑃𝐾2 + 𝑄𝑖),𝑚 ∙ 𝑒(𝑃𝑛, 𝑡𝑄1)

Extract (param, msk, S): For the subset of class indices S,
the aggregate key is computed as
 KS = msk ∑ 𝑃𝑛+1−𝑗𝑗∈𝑠 = 𝛾 ∑ 𝑃𝑛+1−𝑗𝑗𝜖𝑠 .

Decrypt (param, C, i, KS): Let 𝐶 = (𝑐0, 𝑐1, 𝑐2).
Decrypted message is

𝑀� = 𝑐2 ∙
𝑒 ∙ (𝐾𝑆 + 𝛼𝑠, 𝑐0)

𝑒(𝑏𝑠 , 𝑐1)

Observe that the above KAC construction is independent of
the manner in which a data owner chooses to organize her
data classes. Any KAC construction can support
hierarchical data structures, since a data owner can create
an aggregate.

Correctness

𝑀� = 𝑐2∙

𝑒(𝐾𝑠+∑ 𝑃𝑛+1−𝑗+𝑖,𝑐0𝑗∈𝑠,𝑗≠𝑖)

𝑒(∑ 𝑃𝑛+1−𝑗,𝑐1𝑗∈𝑠)

 = 𝑐
2∙
𝑒(∑ 𝛾𝑃𝑛+1−𝑗 𝑗∈𝑠,𝑗≠𝑖 +∑ 𝑃𝑛+1−𝑗+𝑖,𝑡𝑄)𝑗𝜖𝑠,𝑗≠𝑖

𝑒(∑ 𝑃𝑛+1−𝑗,𝑗∈𝑠 𝑡�𝑃𝐾2+𝑄𝑖�)

 = 𝑐
2∙

𝑒(∑ 𝑃𝑛+1−𝑗+𝑖,𝑗∈𝑠 𝑡𝑄)

𝑒�𝑃𝑛+1,𝑡𝑄�𝑒(∑ 𝑃𝑛+1−𝑗,𝑡𝑄𝑖𝑗∈𝑠)

 = 𝑀 ∙ 𝑒(𝑃𝑛 ,𝑡𝑄1)
𝑒(𝑃𝑛+1,𝑡𝑄)

 = 𝑀.

Extended KAC with aggregate key broadcast
The KAC constructions require the aggregate keys to be
transmitted to data users via secure channels. However, in
a real world data sharing setup with m data users and 𝑚′
data owners, such a solution requires the existence of
𝑂 (𝑚𝑚′) secure channels, which is extremely costly. In
addition, the dynamically increasing nature of the network
implies that the requirement for secure channels increases
in a multiplicative mode with every new data owner/user
joining the network. This makes the basic KAC scheme
difficult for large scale deployment regardless of its
cryptographically secure aggregate key generation
properties. In this section, we develop a novel mechanism
for public key based aggregate key distribution that
reduces the secure channel requirement to 𝑂 (𝑚 + 𝑚′) from
 (𝑚𝑚′) . We use broadcast encryption, which is a well
known technique in public key cryptography, to efficiently
distribute the aggregate keys among multiple users in a
secure fashion. Our extended KAC construction combines
the basic KAC instance with the public key based broadcast
encryption system to construct a fully public key based
online data sharing scheme.

The Framework for Extended KAC
The framework for extended KAC with aggregate key
broadcast is presented below:
1) Setup (1⋋ ,𝑛,𝑚): Set up () operation takes the number of
data classes n, the number of users m and the security
parameter as the input. Output the public parameter
param.
2) Owner Key Gen(): Outputs the public key PK, the
master-secret key msk and the broadcast secret key bsk for
a data owner registering in the system.
3) Owner Encrypt (param, PK, i, M): Takes as input a data
class i ∈{1,..., n} and the plaintext data M. Outputs a partly
encrypted cipher text C0. Note that C0 is not the final
cipher text and is not exposed to the outside world. It is
sent to the system administrator via a secure channel for
additional medication as described next. Note here that any
instantiation of this scheme must ensure that the partial
ciphertextC0 is protected using appropriate randomizations
so as to reveal nothing about the underlying plaintext data
M during transmission to the system administrator.
4) System Encrypt (C0, msk, bsk): Takes as input the
partially encrypted cipher text C0, the master secret key
msk and the broadcast secret key bsk. Outputs the final
cipher text C which is made available on the cloud. This
step is carried out by the system administrator, who is a
trusted third party.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1724
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

5) User Key Gen (param, msk, 𝚤̂): Takes as input the data
user id 𝚤̂ ∈{1,...,m}and outputs the corresponding secret key
𝑑�̂�.
6) Extract (param, msk, S): Takes as input the master secret
key msk and a subset of data classes S⊆{1,...,n}. Computes
the aggregate key KS for all encrypted messages belonging
to these subset of classes, and passes it as input to the
Broadcast algorithm for generating the broadcast aggregate
key.
 7) Broadcast (param, KS, �̂�, PK, bsk): Takes as input the
aggregate key KS and the target subset of users �̂� ⊆{1,...,m}.
Outputs a single broadcast aggregate key 𝐾(𝑆,𝑆 �)that allows
any user 𝚤̂ ∈ �̂�to decrypt all encrypted data/message
classified into any class i∈S.
8) Decrypt (param, C,𝐾(𝑆,�̂�), i, 𝚤� , 𝑑�̂�, S, �̂�): The decryption
algorithm now takes, besides the cipher text C and the
corresponding data class i ∈S, a valid user id 𝚤̂ ∈ �̂�. It also
takes as input the broadcast aggregate key 𝐾(𝑆,�̂�) and the
secret key 𝑑�̂�. The algorithm outputs the decrypted
message.
We note that the secure channel requirement is one per data
owner (in Owner Encrypt) and one per data user (in User
Key Gen). Thus the overall secure channel requirement
is𝑂 (𝑚 + 𝑚′). Observe that the main challenge to be tackled
in realizing this scheme is combining the original aggregate
key KS with the broadcast secret to obtain the final
broadcast aggregate key K

CONCLUSIONS AND DISCUSSIONS
In this paper, we have proposed an capably implementable
version of the basic key-aggregate cryptosystem in with
low overhead cipher texts and aggregate keys, using
asymmetric bilinear pairings. Our creation serves as an
efficient solution for several data sharing applications on
the cloud, including collaborative data sharing, product
license distribution and medical data sharing. We have
proved our construction to be fully collusion resistant and
semantically secure against a non-adaptive adversary
under appropriate security assumptions. We have then
demonstrated how this construction may be modified to
achieve CCA-secure construction, which is, to the best of
our knowledge, the first CCA secure KAC construction in
the cryptographic literature. We have further demonstrated
how the basic KAC framework may be efficiently extended
and generalized for securely broadcasting the aggregate
key among multiple data users in a real-life data sharing
environment. This provides a crucial pathway in designing
a scalable fully public key based online data sharing
scheme for large-scale deployment on the cloud. We have
presented simulation results to validate the space and time
complexity requirements for our scheme. The results
establish that KAC with aggregate key broadcast

outperforms other existing secure data sharing schemes in
terms of performance and scalability.

REFERENCES:

[1] F. Gens, “IT cloud services user survey, pt. 3: What users
want from cloud services providers,” Aug. 2008,
http://blogs.idc. com/ie/?p=213

[2] S. S. Chow, Y.-J. He, L. C. Hui, and S. M. Yiu, “Spice-
simple privacy-preserving identity-management for cloud
environment,” in Applied Cryptography and Network
Security. Berlin, Germany: Springer, 2012, pp. 526–543.

[3] C. Wang, S. S.-M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacypreserving public auditing for secure cloud
storage,” Cryptology ePrint Archive, Report 2009/579, 2009.
[Online]. Available: http:// eprint.iacr.org/

[4] S. S. Chow, C.-K. Chu, X. Huang, J. Zhou, and R. H.
Deng, “Dynamic secure cloud storage with provenance,” in
Cryptography and Security: From Theory to Applications.
Berlin, Germany: Springer, 2012, pp. 442–464.

[5] E. C. Shallman, “Up in the air: Clarifying cloud storage
protections,” Intell. Property Law Bulletin, vol. 19, 2014,
Art. no. 49.

[6] C.-K. Chu, S. S. Chow, W.-G. Tzeng, J. Zhou, and R. H.
Deng, “Key-aggregate cryptosystem for scalable data
sharing in cloud storage,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 2, pp. 468– 477, Feb. 2014.

[7] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant
broadcast encryption with short ciphertexts and private
keys,” in Advances in Cryptology. Berlin, Germany:
Springer, 2005, pp. 258–275.

[8] S. G. Akl and P. D. Taylor, “Cryptographic solution to a
problem of access control in a hierarchy,” ACM Trans.
Comput. Syst., vol. 1, no. 3, pp. 239–248, 1983.

[9] G. C. Chick and S. E. Tavares, “Flexible access control
with master keys,” in Advances in Cryptology. Berlin,
Germany: Springer, 1990, pp. 316–322.

[10] W.-G. Tzeng, “A time-bound cryptographic key
assignment scheme for access control in a hierarchy,” IEEE
Trans. Knowl. Data Eng., vol. 14, no. 1, pp. 182–188,
Jan./Feb. 2002.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1725
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 [11] G. Ateniese, A. de Santis, A. L. Ferrara, and B.
Masucci, “Provably-secure time-bound hierarchical key
assignment schemes,” J. Cryptology, vol. 25, no. 2, pp. 243–
270, 2012.

————————————————
• Mr.Mohemmed Yousuf , Assistant Professor, MVJ College of

Engineering, Bangalore, mohemmed.yousuf@mvjce.edu.in

• Mr.Godhandaraman , Assistant Professor, MVJ College of Engineering,

Bangalore ,gdraman84@gmail.com

• Mr.Karthick Myilvahanan, Assistant Professor, MVJ College of

Engineering, Bangalore, karthik.mj@mvjce.edu.in

IJSER

http://www.ijser.org/

